
Hear ye, hear ye. In just a few short moments, before your very eyes, you will have the opportunity to observe mystery decision statement number four. C++ programmers from the far reaches of the room, please enter that last line of code and then gather around so that you can see and hear about this marvel. The presentation will begin momentarily.
Hello everyone. My stage name today is Mr. A., so if I don't see your hand waving and you need to get my attention, just holler that. What you might ask first is "What is a decision statement?" While for most of you this term will be unfamiliar, if I tell you it's a word I made up to describe places in your programs where decisions are made, you can probably name the first three. Do I have a volunteer from the audience who can name just one? [Possible hints: (==) (; ;)] You're probably thinking that three is enough, but programmers came up with a fourth. It's usually called the switch or case statement. Programmers didn't invent it to make your lives harder; they did it to make their lives and our lives easier. I'm going to try to convince you of this and in doing so I hope that you will learn what this thing is, why it's there, and when to use it.
Here's our scenario. You are working in an office somewhere in this school and your boss asks you to make a "days of the week" menu. It will be used to convert between a letter like M that people type and the word Monday, T for Tuesday, and so on. This is so that someone can print out class schedules for the right day, the lunch menu, special events calendars, and so on. It might end up looking like the file menu in your programs. Now, we don't need a fancy new switch statement for this, do we? Let's start with the simple answer and see how far we can get with it.
Am I on the right track (if (day=='') cout<<"";)? Let's test it once. It seems to work, so you go home for the weekend and celebrate. Monday morning you find the dreaded change request form lying on your desk. It says, "Sometimes people get the caps lock key stuck on, so please make your program accept capital letters as well. People are also prone to typing h instead of r for Thursday, so please allow that, too." No problem, you think, and you type something like this. [|| day=='']. [Make a mistake and retype 'r' instead of 'h'. They may catch it.] Ah, so I can't fool you, but can I fool the compiler? Let's try it. It does fool the compiler and here I go back and correct it. Good. You go home again and celebrate a hard day's work.
On Tuesday morning, there is another change request. "When people type a wrong letter, at least something should happen. We'd also like to use your code for the billing system, but it's not fast enough. Can't you speed it up?" Uh, oh. Who can help me with that? We need to add some else's. How does that speed it up? That sounds right. Let's double check. [Watch to see whether it will show all || parts.] Indeed, that works. You go home, celebrate a hard day's work, and then are relieved the next morning when there is no form on your desk. There's no form the next day, either. Then there's none on Friday morning.
Just when you thought you were home free for the weekend, someone runs into your office and panting explains that it's not fast enough. "It was doing fine on Wednesday and good enough on Thursday, but today it's not keeping up with the high speed printer. Can't you do something?" Why is it having problems on Friday when it was fine on Wednesday? What can we do about it? [Explain how many of these comparisons are still made.] One thing we can do is switch Friday's code with Monday's code, but then we'll have to do something else for Monday. There's a more general solution, and that is to finally use our switch statement.
The switch statement looks like this: [Type it out.] <expression> is often the name of the variable you're using in all these comparisons. See "day" all over? That goes here. Next come case and the values we compare day to. I'll make a mistake here and we can see if the compiler notices. Statements are just what we want to happen whenever day matches any of the cases. Finally we need a break to say that we're done with these cases and should move on to the next set. What do we do with the final else? There's nothing being compared? This is the default case. It's what happens when nothing matches. Just type "default:" and what should happen. "Break" is optional with the last case because we're at the end, but while we're at it, let's see what happens if we leave one out elsewhere. [Add cout<<"That's right"; for Thursday.] When we compile this it should catch our error. When we run it, we notice that the comparisons are not made. When we enter 'R,' notice that the program outputs two lines of text. Forgetting a break is a common mistake, but sometimes you'll want to do it on purpose. So, you turn in this code on Friday afternoon and live happily ever after. Congratulations.
Before we review, does anyone have questions? Switch/case statement is a complex construction involving keywords switch, case, break, and default. Programmers came up with it to solve a very common problem in a way that is faster and more reliable than the if-else solution. Use it when you have multiple equality comparisons to a single variable like when you are implementing a menu or when you are completing your next worksheet, which is "cpp assignments 1-switch.doc" The problem should look very familiar to you. In just a bit I'll come around the room and check your work and then you can resume the regularly scheduled program. Thanks.

