
Objectives:
Students will be able to

1. define recursion.

2. recognize recursion in a program.

3. convert simple iteration into simple recursion

4. write recursive code to solve a simple problem.

5. identify typical recursion strategies such as

a) helper functions,

b) state-holding arguments,

c) and counting down.

6. defend the assertion that recursion and iteration are equivalent.
7. apply the recursive technique to a suitable problem.

Anticipatory set:

Today's topic is (drum roll) (r(e(c(u(r)s)i)o)n). We're going to slice it, dice it, define it, recognize it, convert it, write it, and practice, practice, practice. You may already be experts on this topic, so let me check. Can anyone define the term or describe when you might have used it? One very simple definition is this: (n) See recursion. In other words, it is when a piece of code, a method, calls itself. You may have had an opportunity to use recursion in your recent assignment with the Fibonacci numbers.
Recursion is important for several reasons. Some problems, such as Fibonacci, and especially those dealing with recursive data structures like trees, are recursive. They can be solved more quickly, correctly, and elegantly with recursion. Recursion makes explicit use of a divide and conquer strategy that is good practice. Some languages, especially of the logical and functional variety like Prolog and lisp use recursion extensively. Java is not the last language you will see. Lastly, the College Board expects you to know it for the AP test.

Most people think recursion is difficult, so I would like to make use of a related concept that you are more familiar with. Recursion is a kind of looping. Another way to loop is with iteration. As we get started, I would like to fill this side of the board with familiar examples of iteration and on the other side work out the corresponding recursive code. I have printed an outline of the recursive code for you with a few comments. Please write down the code we come up with so that you can test it at your computers afterwards. From what we don't get to, and we won't finish it all, you can choose one or more problems to solve yourselves. Does that sound fair?
Discussion:

On the right we'll write telltale signs of iteration? There are special syntactic elements of Java that facilitate iteration: while and for. On the recursion side we have no special syntax other than the usual method call which you already know about.
1. Let's start with the simplest example of iteration that I can think of, the infinite loop. Can someone tell me how to program that? This code would need to sit inside a method inside a class inside a package. Let's just write the method. I'll use p.s.v. for public static void. What is the corresponding recursive version? So far, so good. You can record that on your papers. Notice how the iterative version includes a condition. Since it is always true, the recursive version can call itself without asking questions. If we wanted to make the comparison more direct, we could add an if(true).
2. This method calls itself directly. Is it considered recursion if it called itself indirectly somehow? Yes. Can someone give an example?

3. This code doesn't do much, so let's make it count. I'll use a for loop. Can someone help with the code for that? There's a slight complication. Not only is there a condition, but also an extra variable and a special magic number 0. I don't know how we can do without the i since it is what we need to print out. The strategy often used is to change from a local variable to an argument. Let's add int n. We can't do without 0, either, so let's pass it in when we call the function for the first time. There are other strategies for this, but let's ignore them for now. What about i++? When we call count again, lets add 1 to n.
4. Our iterative and recursive code don't match now. One way to restore tranquility is to use a helper function to get the recursion started. countFromZero will just start off count with 0. The other method is to change the iterative code so that it doesn't use this magic number 0, but instead whatever is passed into it. If we changed around some names now, the methods would be interchangeable.
5. So far we still have infinite loops, so we better figure out how to stop counting. Let's pass in the min and max values. Now we have i, min, and max. Let's pass them all in. The first thing we would need to do is set i to min. That works well the first time, but i will always be min then. Let's change the for loop to use cur, for current, instead of min. Because it is the first argument, it is immediately set to min. Then in the loop we can update it just like i. This is more easily translated. cur helps us keep track of what part of the problem we are currently working on.
6. Here's a tricky question for you. What happens if we change the order of these two lines? We count backwards. This is a little strange because we always add 1. This adding one is a little deceptive. It gives the impression that we have more and more to do each time as if we have an infinite loop.
7. Iterative solutions most often count forwards, so if we reverse the numbers and use cur--, it looks a little strange. On the recursive side, however, we have a typical recursive function.
8. So far we haven't been returning any values, so let's try summing a bunch of numbers up to n. We need return values. If we are off the left end of the array, we return the identity element for addition, 0. Otherwise, we return the current number plus the sum up to the previous number. We now have a prototypical recursive function with a base case and a recursive case. Notice that we do not have to keep track of a separate sum. Can someone explain how that works? [Write it out with lots of parentheses and evaluate.]
9. Factorial should now be easy. In math we have n!=n*(n-1)! for recursion and the pi notation for iteration. Recursion typically uses a divide and conquer technique. Here we are dividing very unevenly. We could also use n!=n*(n-1)*(n-2)!.

10. Let's add to our parameters some data to work on and sum up all elements in an array. Here we see a helper function and then the passing of extra state parameters.
11. This should be old hat by now.

12. You saw Fibonacci before. The iterative version is much more complicated and the recursive version tracks the mathematics much more closely. We are probably much more certain that the recursive version is correct. However, it is also inefficient in both space and time. Why? It uses space on the stack, which may run out, and it performs many calculations twice. See how it calls itself not once, but twice? It does not know that it duplicates calculations. These are tradeoffs that you will need to be able to justify when you chose your approach.

13-16. I think that you are well on your way and won't need to curse much as you recurs.

As we've been doing these side-by-side comparisons, I hope that you have been slowly concluding that recursion and iteration are theoretically equivalent. Any problem you can solve with one can be solved with the other. In practice, one or the other is usually easier to implement or faster or smaller. As long as you have both methods at your disposal, you can choose the best one for the particular circumstance.
My suggestion is that you go enter the code for 1-12 to make sure you understand it and that I wasn't pulling your leg or anything. Then, pick one or more from 13-16 to implement. I'll put the file with the iterative versions of all the code where you can get at it so that you can compare output and get a head start on the harder problems.

Meeting adjourned.

