
1. name the two parts of merge sort.

2. explain the algorithm in their own words.

3. apply the algorithm to a stack of cards.

4. analyze the complexity of the algorithm.

5. develop a software implementation of the algorithm.

6. compare merge sort to the previously learned selection and insertion sort.

[Students will need a printout of the code outline, a writing utensil, and a solid surface.]

We have just discussed why sorting is so important. Without sorting we could hardly find information in the telephone book, you couldn't figure out who had the high game scores, and you would be very dissatisfied with randomly ordered search results from Google. We already have two sorting algorithms, so why do we need a third? It has to do with the N-squared complexity of the algorithms. They simply take too long. When Google has to sort the 1,000,000 hits of your query to present the top 10, you don't want to wait forever. A new sort, called merge sort, will deliver the answer 50,000 times faster. Merge sort can answer in a second what would take the other sorting algorithms half a day.
Merge sort has two parts: merging and, um, sorting. One of the reasons that I have the privilege of presenting it to you is that it does not involve only iteration, but also… recursion. Typically the sorting is done recursively while the merging is iterative. You'll remember from last time that it doesn't have to be that way; it's simply for convenience. Let's start with merge so that our review of recursion is not interrupted. I have approximately 80 cards here (for 10 students). When I fan them out, please take approximately four consecutive cards for your left hand and the same for your right hand. The exact number doesn't matter. I just don't want to run out. Hold them face up like so. Now in each of your hands you hold an array of integers one through ten, which happen to be sorted from low to high. We'll name them int[] leftArray and int[] rightArray. Your assignment is to perform this function: int[] merge(int[] leftArray,int[] rightArray) by creating a new array of cards in the middle that contains all your cards sorted from low to high. Go ahead and try… Can someone explain how you did it? [Record the algorithm on the board.] Can you program what you just told me? Will this code/algorithm work if we have fewer cards, more cards, or different numbers of cards in the left and right arrays? Good, because that will be important for sorting.
[Note that there are several ways to distribute the cards. Remove cards so that there are either 1, 2, 4, or 8 for 1-2, 3-6, 7-14, or 15-31 students if you don't want them to hold cards more than twice, or simply use as many cards as students. I will assume the latter so that everyone participates.] Now how do we sort? Here. [Hand cards to nearest person. Write on board int[] sort(int[] unsortedArray)]. What can we do with this unsortedArray? S/he could hand them to the next person and say sort, but then we'll have an infinite recursive loop like we saw earlier. The other option we have is merge. Since merge requires two arrays, let's divide the array into a leftArray and a rightArray. What's next? [Students will probably say merge.] Wait. Doesn't our merge algorithm require that the two arrays be sorted? Are they? We need a plan B. This happens to be the recursive case. You pass the buck. Hand one array to one person who is empty handed and the other to a different person. Now tell them to sort. Now you two have a problem. What do you do? [Go ahead until everyone is stuck with just one card. They will probably notify you. Have them just hold onto it.] Now we're really in a bind. It's time for the base case. Can you sort that card? Great! Do you need to call sort again if you have only one card? Do you need to call merge? Now we need to start passing the cards back to where they came from. This will be a little difficult since we aren't a power of two. Half of you find someone with one or both hands free and give them your card. When you get the cards back now, one in each hand, you know that each array is sorted and now you can merge them. Go ahead and do that according to our merge algorithm. Now that the new array is sorted, let's hand it to someone else who can merge your cards with someone else's. If you now have cards, merge. Hand them off, merge. Are you finished? If you think they're sorted now, you can return them. Hey, it worked. Let's work out the code now… [Have students describe the algorithm.]
That seemed like a great deal of work, didn't it. How in the world is this algorithm going to be faster than the other two algorithms? Let's draw a diagram of what we just did. Let's give the first person 8 cards. 8 will be our N for big-oh notation. That person gives 4 each to 2 people who in turn give 2 each to 4 people, who give 1 each to 8 people. Notice that there are always 8 cards in each row. For each card you have to merge, you have to look left, look right, do a comparison, copy the integer and so on. Each of these rows [but a rectangle around them] has a complexity of N. How many rows do we have? We go until the number of people in the row matches the number of cards, because then they each have 1 card. Notice that the first row has 20 people, the next has 21, then 22 and lastly 23. The exponent is the row number, so that when 2rows=N [write on board], we're done. Take log2 of each side and find that rows=log2(N). Each row had complexity of N, so we have to multiply for a total complexity of Nlog2(N).
Is this logarithmic complexity big deal? How does it compare to the other two algorithms? If N is very large it sure is important. For 1,000,000 Google hits, that about 220, the selection and insertion sorts cost (220)2, or 220*220. The merge sort costs 220log2(220) = 20*220. The ratio is (220*220)/(20*220) = 1,000,000/20 = 50,000. That will take half a day and compress it into a second. Is it worth it? If you are Google, it sure is, and chances are if you are you, it will be.
Let's check our list again. What are the two parts? Do we have an explanation? If I give you a pile of cards, can you sort them this way? What is the complexity? How does it compare with the other algorithms? Now the tough question: Can you write a program that implements this algorithm? Let's see. Find the file MergeSorter.java in Mr. Hopley's directory and give it a try. Several test cases are included for your convenience. The program is about 25 lines of code, but they can be tricky. If you can write them in less than half a day, you'll still come out ahead.

